Aerosol Chemical Characterization on Board the DOE G1 Using the PILS-IC Technique During TEXAQS 2000

Y.-N. Lee, Z. Song, Y. Liu, S. Springston, L. Nunnermacker, P. Daum

Brookhaven National Laboratory

R. Weber, D. Orsini

Georgia Institute of Technology

N. Laulainen, J. Hubbe, V. Morris

Pacific Northwest National Laboratory

Why Determine Aerosol Chemical Composition?

- Sources and precursors
- Formation mechanisms
- Chemical evolution
- CCN properties
- Optical effects
- Health effects

Principle of the PILS Technique

- Aerosol particles are grown to super micron size under supersaturation conditions created by mixing sample air with steam; particles of 100 nm diameter are activated with a >90% efficiency.
- The resulting super micron size liquid droplets are collected by a single orifice jet impactor; $D_p(50)$ is ~1 μm .

Principle of the PILS Technique (continued)

- Liquid sample collected at the impactor surface is transported to the IC's with a constant carrier flow (ca. 0.2 mL min⁻¹)
- Samples are injected for analysis every 3 minutes, which is the time required to elute the major ions.
- Sample integration time is governed by the carrier flow rate and the sample loop size and was 120 s during TexAqs 2000.

IC Analysis

- Cations, Na⁺, NH₄⁺, K⁺, and Ca²⁺, and anions, Cl⁻, NO₃⁻, and SO₄²⁻ were determined.
- The limit of detection, based on the IC analysis (ca. $0.1 \,\mu\text{M}$) and a sample air flow rate of $5.0 \,\text{L}$ min⁻¹, is $\sim 0.1 \,\mu\text{g}$ m⁻³ for these ions.

Inlet Arrangement

- Isokinetic sampling at a 30 L min⁻¹ flow rate.
- A 2.5 μm size cut achieved by a MOUDI impactor.
- SO₂, HNO₃, and NH₃ removed using two glass annular denuders in series.

Schematic Diagram of the G1 PILS System

The PILS-IC Deployed on the DOE G1 during TexAqs 2000

Frequency distributions of aerosol ionic concentrations G1, TexAqs 2000

Distribution of aerosol ion mass concentrations G1, TexAqs 2000

Ratios of [NH₄] to 2x[SO₄]+[NO₃] as a function of SO₄ mass concentration in 4 quartiles

Other aerosol measurements on board the G1

Passive Cavity Aerosol Spectrometer Probe (pcasp)	Number distribution in 15 bins between 0.1 µm and 3.0 µm
Particle Soot Absorption Photometer (PSAP)	Absorption coefficient at 565 nm due to black carbon
Forward Scattering Spectrometer Probe (FSSP)	Number distribution in 15 bins between 2 µm and 47 µm
Twin Scanning Electrical Mobility Sizer (TSEMS)	Number distribution in the range from 3 nm to 700 nm

Additional characterization of aerosols

Pcasp data	Integrated particle surface and <i>volume</i> concentrations Estimate of <i>total mass</i> of the accumulation mode particles with assumed densities (e.g., 1.7 g cm⁻³ for (HN₄)₂SO₄, and 1 g cm⁻³ for organics)
PSAP data	S Estimate of <i>black carbon mass</i> concentration with an assumed σ value of 10 m ² g ⁻¹ .
Surrogate organic mass	

Aerosol Organic Component Determination

- Typically by filter collection followed by EC/OC determination based on the thermal optical reflectance technique
 - Low time resolution (1 hr or longer)
 - Positive interference by gaseous organic compounds
 - Negative interference due to evaporative loss on filter medium
 - EC/OC subject to operational definition arising from, e.g., charring of OC
 - Uncertainty in the conversion factor from carbon to compound
- Large measurement uncertainties associated with the OC determination

Questions on aerosol mass, chemical composition, and formation mechanisms

- How much does the inorganic ion mass account for total aerosol mass?
- How much the black carbon and organic compounds contribute to total aerosol mass?
- What relationships can be discerned among these components, and what are their sources?
- *Is there a size dependence of these components?*
- Are there photochemical signals in these components?

Comparison of total aerosol ion mass and particle volume 9/11/00

Comparison of total aerosol ion mass and particle volume 9/12/00

Comparison of total ion concentration and total particle volume 9/6/00

m

g u

Contribution of ionic components to total aerosol mass

Relationships Among Aerosol Components

Aerosol Chemical Composition Observed on 9/6/00

Comparison of aerosol chemical composition

Size Dependence of Aerosol Chemical Composition

Aerosol mass loading as a function of photochemical age

Relationships between aerosol mass and photochemical products morning flight, 8/26/00

Relationships between aerosol mass and photochemical products afternoon flight, 8/26/00

Relationships between aerosol mass and photochemical products afternoon flight, 9/6/00

Relationships between aerosol mass and photochemical products morning flight, 9/7/00

Dependence of aerosol mass on NO_z morning flight, 9/11/00

Dependence of aerosol mass on NO_z morning flight, 9/12/00

Conclusions

- ¥ Inorganic ions, black carbon, and surrogate organics of fine aerosol particles were determined on board the DOE G1during TexAqs 2000.
- \forall NH₄⁺ and SO₄²⁻ were the dominant ionic species; NO₃⁻ was typically small, < 0.5 mg m⁻³, with infrequent excursions reaching half as SO₄²⁻.
- The $[NH_4^+]$ to $[NO_3^-]+2[SO_4^{2-}]$ molar ratio often exceeded unity, suggesting the presence of other ionic species such as organic acids, and that NH_3 was in abundant supply.
- \forall An organic aerosol event showed a mass maximum at ~0.4 m, contrasting that at ~0.2 m observed during a sulfate aerosol event.
- * The aerosol organic component correlated well with black carbon, and contributed nearly equally to aerosol mass as the inorganic ions.
- ¥ Fine aerosol mass, both the inorganic and organic fractions, showed a positive correlation with H₂CO and NO_z, suggesting a photochemical source of aerosol precursors.